Computing Large Sparse Jacobian Matrices Using Automatic Differentiation

نویسندگان

  • Brett M. Averick
  • Jorge J. Moré
  • Christian H. Bischof
  • Alan Carle
  • Andreas Griewank
چکیده

The computation of large sparse Jacobian matrices is required in many important large-scale scienti c problems. We consider three approaches to computing such matrices: hand-coding, di erence approximations, and automatic di erentiation using the ADIFOR (Automatic Di erentiation in Fortran) tool. We compare the numerical reliability and computational e ciency of these approaches on applications from the MINPACK-2 test problem collection. Our conclusion is that automatic di erentiation is the method of choice, leading to results that are as accurate as hand-coded derivatives, while at the same time outperforming di erence approximations in both accuracy and speed. COMPUTING LARGE SPARSE JACOBIAN MATRICES USING AUTOMATIC DIFFERENTIATION Brett M. Averick , Jorge J. Mor e, Christian H. Bischof, Alan Carle , and Andreas Griewank

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation

This paper is concerned with the efficient computation of sparse Jacobian matrices of nonlinear vector maps using automatic differentiation (AD). Specifically, we propose the use of a graph coloring technique, bicoloring, to exploit the sparsity of the Jacobian matrix J and thereby allow for the efficient determination of J using AD software. We analyze both a direct scheme and a substitution p...

متن کامل

ADMAT: Automatic differentiation in MATLAB using object oriented methods

Differentiation is one of the fundamental problems in numerical mathematics. The solution of many optimization problems and other applications require knowledge of the gradient, the Jacobian matrix, or the Hessian matrix of a given function. Automatic differentiation (AD) is an upcoming powerful technology for computing the derivatives accurately and fast. ADMAT (Automatic Differentiation for M...

متن کامل

DSJM: A Software Toolkit for Direct Determination of Sparse Jacobian Matrices

DSJM is a software toolkit written in portable C++ that enables direct determination of sparse Jacobian matrices whose sparsity pattern is a priori known. Using the seed matrix S ∈ Rn×p, the Jacobian A ∈ Rm×n can be determined by solving AS = B, where B ∈ Rm×p has been obtained via finite difference approximation or forward automatic differentiation. Seed matrix S is defined by the nonzero unkn...

متن کامل

Efficient (Partial) Determination of Derivative Matrices via Automatic Differentiation

In many scientific computing applications involving nonlinear systems or methods of optimization, a sequence of Jacobian or Hessian matrices is required. Automatic differentiation (AD) technology can be used to accurately determine these matrices, and it is well known that if these matrices exhibit a sparsity pattern (for all iterates), then not only can AD take advantage of this sparsity for s...

متن کامل

Exploiting Sparsity in Jacobian Computation via Coloring and Automatic Differentiation: A Case Study in a Simulated Moving Bed Process

Using a model from a chromatographic separation process in chemical engineering, we demonstrate that large, sparse Jacobians of fairly complex structures can be computed accurately and efficiently by using automatic differentiation (AD) in combination with a four-step procedure involving matrix compression and de-compression. For the detection of sparsity pattern (step 1), we employ a new opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1994